Effect of Shear Surface Boundaries on Stress for Shearing Flow of Dry Metal Powders—An Experimental Study

Author:

Craig K.1,Buckholz R. H.2,Domoto G.3

Affiliation:

1. Hofstra University, Hempstead, NY 11550

2. Columbia University, New York, NY

3. Xerox Corporation, Palo Alto Research Center, MES, No. Tarrytown, N.Y. 10591

Abstract

This paper studies the rapid simple shearing flow of dry cohesionless metal powders contained between parallel rotating plates. In this study, an annular shear cell test apparatus was used; the dry metal powders are rapidly sheared by rotating one of the shear surfaces while the other shear surface remains fixed. Such a flow geometry is of interest to tribologists working in the area of dry or powder lubrication. The shear stress and normal stress on the stationary surface are measured as a function of the following parameters: shear surface boundary material and roughness, the shear-cell gap thickness, the shear-rate and the fractional solids content. Both the fractional solids content and the gap thickness are kept at prescribed values during stress measurements. In this experiment the metal powder tested is different from the shear transmission surface material; the effect on the measured normal and shear stress data are reported. The results show the dependence of the normal stress and the shear stress on the shear-rate, particle density and particle diameter. Likewise, a significant stress dependence on both the fractional solids content and the shear-cell gap thickness was observed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3