A Model-Based Computationally Efficient Method for On-Line Detection of Chatter in Milling

Author:

Ma Lei,Melkote Shreyes N.1,Castle James B.2

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. The Boeing Company, Boeing Research and Technology, St. Louis, MO 63166

Abstract

This paper presents a model-based computationally efficient method for detecting milling chatter in its incipient stages and for chatter frequency estimation by monitoring the cutting force signals. Based on a complex exponentials model for the dynamic chip thickness, the chip regeneration effect is amplified and isolated from the cutting force signal for early chatter detection. The proposed method is independent of the cutting conditions. With the aid of a one tap adaptive filter, the method is shown to be capable of distinguishing between chatter and the dynamic transients in the cutting forces arising from sudden changes in workpiece geometry and tool entry/exit. To facilitate chatter suppression once the onset of chatter is detected, a time domain algorithm is proposed so that the dominant chatter frequency can be accurately determined without using computationally expensive frequency domain transforms such as the Fourier transform. The proposed method is experimentally validated.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3