Affiliation:
1. e-mail:
2. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
Abstract
The effects of the uncertainties of various parameters, including the laser fluence, diameter of metal powder particles, laser pulse width, and the initial temperature of metal particles on solid-liquid-vapor phase change processes of metal particles under nanosecond laser heating are investigated in this paper. A systematic approach of simulating the phase change with uncertain parameters is presented and a sample-based stochastic model is established in order to investigate the influence of different uncertain parameters on the maximum surface temperature of metal particles, the maximum solid-liquid interface location, maximum liquid-vapor interface location, maximum saturation temperature, and maximum recoil pressure and the time needed to reach the maximum solid-liquid interface location. The results show that the mean value and standard deviation of the laser fluence have dominant effects on all output parameters.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献