Probabilistic Designs of Air-Bearing Surface on Manufacturing Tolerances

Author:

Yoon Sang-Joon1,Choi Dong-Hoon1

Affiliation:

1. Center of Innovative Design Optimization Technology, Hanyang University, Seoul 133-791, Korea

Abstract

The focus in this paper is to automatically design the air-bearing surface (ABS) considering the randomness of its geometry as an uncertainty of design variables. Designs determined by the conventional optimization could only provide a low level of confidence in practical products due to the existence of uncertainties in either engineering simulations or manufacturing processes. This calls for a reliability-based approach to the design optimization, which increases product or process quality by addressing randomness or stochastic properties of design problems. In this study, a probabilistic design problem is formulated considering the reliability analysis which is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Beginning with this solution, the reliability-based design optimization (RBDO) is continued with the probabilistic constraints affected by the random variables. Probabilistic constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with a minimum increase in the objective. The simulation results of the probabilistic design are directly compared with the values of the initial design and the results of the deterministic optimum design, respectively. In order to show the effectiveness of the proposed approach, the reliability analyses by the Monte Carlo simulation are carried out. And the results demonstrate how efficient the proposed approach is, considering the enormous computation time of the reliability analysis.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3