Affiliation:
1. University of Michigan, Ann Arbor, MI
2. Ford Motor Company, Dearborn, MI
Abstract
Diesel engine emission cycle data shows that major portions of cycle emissions are produced at the beginning of the test, when the aftertreatment is not at operational temperature (prior to “light-off”) [1]. To reduce diesel emissions, aggressive combustion phasing retard via injection timing can be used to achieve faster aftertreatment light-off, but this method is limited because of vibration and harshness concerns associated with the combustion variability induced by the late combustion phasing. In order to achieve aggressive exhaust heating while mitigating combustion variability concerns, the premise of controlling combustion variability is explored. In particular, a controller will use real-time measurements of combustion features and control injection timing to maintain an acceptable level of combustion variability. The closed loop controller tuning requires an understanding of combustion variability behavior as a function of combustion phasing retard. The characterization of combustion variability using engine experiments is presented, and the findings are used to develop a control-oriented combustion variability model consisting of regressions of the statistics of IMEP as a function of fuel and timing offsets.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献