Influence of Stress State on the Failure Behavior of Cracked Components Made of Steel

Author:

Clausmeyer H.1,Kussmaul K.2,Roos E.2

Affiliation:

1. MAN Gutehoffnungshu¨tte GmbH, 4200 Oberhausen 11, Germany

2. Staatliche Materialpru¨fungsanstalt (MPA), Stuttgart University, Pfaffenwaldring 32, 7000 Stuttgart 80, Germany

Abstract

One of the decisive factors influencing the safety of components is the capacity for plastic deformation of the material employed. This depends not only on the actual material properties, such as reduction of area or notch impact energy, but also on the stress conditions prevailing in the component. With sufficiently sharp transitions of geometrical form, or at cracks, such high multiaxial stress states can arise in components, that in spite of excellent plastic deformation capability of the malterial, practically deformationless fractures are inevitable. If one generates from the principal normal stresses (σ1, σ2, σ3) the multiaxiality quotient q, which represents a characteristic quantity for the degree of multiaxiality of the stress state, the effect of the stress states on the strength and deformation behavior of a component can be estimated. With the aid of the Sandel fracture theory, which includes the von Mises yield theory as a special case, the critical q value qc, which characterises the stress conditions leading to cleavage fracture if q < qc, can be calculated. The fracture mechanics evaluation of the sharply notched specimens of dimensions similar to components shows no dependence of the effective crack initiation value on the specimen size or stress state, since at the load free crack tip, plane stress conditions generally prevail. The further failure process after crack initiation in the form of stable crack extension is very strongly controlled by the stress state. This phase could also be estimated from consideration of the pattern of the q value in the remaining cross section. The investigations have shown that the multiaxiality quotient q, which characterizes the degree of multiaxiality of the stress state, represents a characteristic quantity with which, in combination with fracture mechanics methods, the failure behavior of components may be estimated, even with respect to stable crack extension.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3