Study of Slider Dynamics Over Very Smooth Magnetic Disks

Author:

Suzuki Shoji1,Nishihira Henry1

Affiliation:

1. Komag, Inc., 275 S. Hillview Dr., Milpitas, CA 95035

Abstract

Flying characteristics of 50 percent negative pressure sliders on aluminum, glass, and silicon disks with different surface characteristics are described. By using an AE (acoustic emission) and LDV (Laser Doppler Vibrometer) we were able to study the effect of surface roughness and disk materials on the dynamics of the slider. In the regime where the slider flies below the glide height (30 nm) and contact with the disk surface can occur, the AE signal consisted of low frequencies related to air bearing resonance (around 100 kHz), and high frequency related to slider body vibrations (735 kHz). Interestingly, in the high speed regime the AE signal contained low frequency signals. The signal increased as the fly height of the slider increased when flying on the smooth surfaces except on the silicon disk. LDV measurements revealed that the excitation from the silicon disk surface was smaller than on the aluminum disk or the glass disk by 10 dB, which contributed to suppress the vibration of the slider. For a given excitation from the disk, the surface roughness played a key role in determining the slider vibration. We also determined that a fly height fluctuation occurred due to the surface roughness, but the effect was found to be very small. The difference between the textured and smooth surface was from the damping effect on the slider vibration. The slider was made to collide with a protrusion fabricated on a disk surface to study the damping characteristics of the slider. The textured disk surface gave more damping than on the smooth disk surface by up to 20 percent.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3