Simulation of Phonon Transport in Semiconductors Using a Population-Dependent Many-Body Cellular Monte Carlo Approach

Author:

Sabatti Flavio F. M.1,Goodnick Stephen M.1,Saraniti Marco1

Affiliation:

1. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 e-mail:

Abstract

A Monte Carlo rejection technique for numerically solving the complete, nonlinear phonon Boltzmann transport equation (BTE) is presented in this work, including three particles interactions. The technique has been developed to explicitly model population-dependent scattering within a full-band cellular Monte Carlo (CMC) framework, to simulate phonon transport in semiconductors, while ensuring conservation of energy and momentum for each scattering event within gridding error. The scattering algorithm directly solves the many-body problem accounting for the instantaneous distribution of the phonons. Our general approach is capable of simulating any nonequilibrium phase space distribution of phonons using the full phonon dispersion without the need of approximations used in previous Monte Carlo simulations. In particular, no assumptions are made on the dominant modes responsible for anharmonic decay, while normal and umklapp scattering are treated on the same footing. In this work, we discuss details of the algorithmic implementation of both the three-particle scattering for the treatment of the anharmonic interactions between phonons, as well as treating isotope and impurity scattering within the same framework. The simulation code was validated by comparison with both analytical and experimental results; in particular, the simulation results show close agreement with a wide range of experimental data such as thermal conductivity as function of the isotopic composition, the temperature, and the thin-film thickness.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3