Mechanisms of Bimaterial Attachment at the Interface of Tendon to Bone

Author:

Liu Yanxin1,Birman Victor2,Chen Changqing3,Thomopoulos Stavros4,Genin Guy M.5

Affiliation:

1. Department of Mechanical, Aerospace, and Structural Engineering, Washington University, St. Louis, MO 63130

2. Engineering Education Center, Missouri University of Science and Technology, St. Louis, MO 63121

3. Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, China

4. Department of Orthopaedic Surgery, Washington University School of Medicine, and Center for Materials Innovation, Washington University, St. Louis, MO 63110

5. Department of Mechanical, Aerospace, and Structural Engineering, and Center for Materials Innovation, Washington University, St. Louis, MO 63130

Abstract

The material mismatch at the attachment of tendon to bone is among the most severe for any tensile connection in nature. Attaching dissimilar materials is a major challenge in engineering, and has proven to be a challenge in surgical practice as well. Here, we examine the material attachment schemes employed at this connection through the lens of solid mechanics. We identify four strategies that the body adopts to achieve effective load transfer between tendon and bone: (1) a shallow attachment angle at the insertion of transitional tissue and bone, (2) shaping of gross tissue morphology of the transitional tissue, (3) interdigitation of bone with the transitional tissue, and (4) functional grading of transitional tissue between tendon and bone. We provide solutions to model problems that highlight the first two mechanisms: discuss the third qualitatively in the context of engineering practice and provide a review of our earlier work on the fourth. We study these strategies both in terms of ways that biomimetic attachment might benefit engineering practice and of ways that engineering experience might serve to improve surgical healing outcomes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3