Experimental and Numerical Study of One, Two, and Three Embedded Needle Cryoprobes Simultaneously Operated by High Pressure Argon Gas

Author:

Magalov Z.1,Shitzer A.1,Degani D.1

Affiliation:

1. Department of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel

Abstract

One, two, and three needle cryoprobes, 1.47mm outside diameter, simultaneously and uniformly operated by high pressure argon gas, were tested in a gel simulating the thermal properties of biological tissues. The probes were inserted into the same depth in the gel through two parallel templates with holes drilled on a 5×5mm2 mesh. The temperature of the active segment of the probe was monitored by a single soldered thermocouple (TC). Temperatures in the gel were monitored by K-type TC strings in the radial, and in the downward and upward axial directions. The phase-change problem in the gel was solved by ANSYS7.0, based on the enthalpy method. Calculated and measured results compared reasonably well with the most deviations observed in the upward axial direction. Results of this study may be summarized as follows: (a) Due to the cylindrical structure of the probe, the advancement of the frozen fronts was more pronounced in the upward axial and the radial directions than in the downward direction. (b) The farthest placement of the two probes (10mm) yielded the largest volumes enclosed by the isothermal contours. (c) In the tightest two placement configurations of the three probes, the −40°C fronts of all frozen lumps have joined together even after 1min of operation, while in the less tight configurations, joining occurred later. (d) In multiprobe applications and for a given duration of application, there exists a certain placement configuration that will produce the maximal volume of any temperature-specific frozen lump. The computational tool presented in this study could assist the surgeon in the preplanning of cryosurgical procedures and thus reduce uncertainties and enhance its success rate.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3