Measurements and Predictions of Laminar Mixed Convection Flow Adjacent to a Vertical Surface

Author:

Ramachandran N.1,Armaly B. F.1,Chen T. S.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Missouri—Rolla, Rolla, MO 65401

Abstract

Measurements and predictions of laminar mixed forced and free convection air flow adjacent to an isothermally heated vertical flat surface are reported. Local Nusselt numbers and the velocity and temperature distributions are presented for both the buoyancy assisting and opposing flow cases over the entire mixed convection regime, from the pure forced convection limit (buoyancy parameter ξ = Grx/Rex2 = 0) to the pure free convection limit (ξ = ∞). The measurements are in very good agreement with predictions and deviate from the pure forced and free convection regimes for buoyancy assisting flow in the region of 0.01 ≤ ξ ≤ 10 and for opposing flow in the region of 0.01<ξ< 0.2. The local Nusselt number increases for buoyancy assisting flow and decreases for opposing flow with increasing value of the buoyancy parameter. The mixed convection Nusselt numbers are larger than the corresponding pure forced and pure free convection limits for buoyancy assisting flow and are smaller than these limits for opposing flow. For buoyancy assisting flow, the velocity overshoot and wall shear stress increase, whereas the temperature decreases but the temperature gradient at the wall increases as the buoyancy parameter increases. The reverse trend is observed for the opposing flow. Flow reversal near the wall was detected for the buoyancy opposing flow case at a buoyancy parameter of about ξ = 0.20.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3