Selection of Distributed Power-Generating Systems Based on Electric, Heating, and Cooling Loads

Author:

Kowalski Gregory J.1,Zenouzi Mansour2

Affiliation:

1. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115

2. Electromechanical Engineering Program, Department of Electronics & Mechanical, Wentworth Institute of Technology, Boston, MA 02115

Abstract

A generalized thermodynamic model is developed to describe combined cooling, heating, and power generating systems. This model is based on reversible power generation and refrigeration devices with practical, irreversible heat exchanger processes. It provides information on a system’s performance and allows easy comparisons among different systems at different loading conditions. Using both the first and second laws as well as the carbon dioxide production rate allows one to make a first-order system assessment of its energy usage and environment impact. The consistency of the exergy destruction rate and the first law performance ensures that the thermodynamic system boundaries are correctly and completely defined. The importance of the total thermal load to the required power ratio (HLRP) as a scaling parameter is demonstrated. A number of trends for limited conditions can be delineated even though the reported results confirmed that generalized trends are not identifiable because of the systems’ complexities. The results demonstrate that the combined vapor compression∕absorption refrigeration has higher first law utilization factors and lower carbon dioxide production rate for systems with high refrigeration to total thermal load ratios for all HLRP values. Fuel cell systems outperform engine systems for large refrigeration load applications. An illustration of combining these results to an economic analysis is presented.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference24 articles.

1. Application of Small Scale Fuel Cells in Combined Heat∕Power Cogeneration;Garche

2. Comparison Based on Energy and Exergy Analyses of the Potential Cogenration Efficiencies for Fuel Cells and Other Electricity Generation Devices;Rosen;Int. J. Hydrogen Energy

3. Opportunity for Cogeneration;Manning;ASHRAE J.

4. Small-Scale Cogeneration Handbook

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3