High-Temperature Heat Transport and Storage Using LBE Alloy for Concentrated Solar Power System

Author:

Kim Jin-Soo1,Dawson Adrian1,Wilson Robert2,Venkatesan Kishore2,Stein Wesley1

Affiliation:

1. CSIRO Energy Technology, Newcastle, Australia

2. CSIRO Process Science & Engineering, Clayton South, Australia

Abstract

Liquid metals have received growing attention as a potential replacement for more conventional heat transfer fluids in concentrated solar power (CSP) systems. Owing to liquid metals high thermal conductivity, an increase in solar receiver efficiency as well as higher serviceable temperatures could enable more advanced power cycles to be integrated to the CSP system. Recently, CSIRO carried out research on a solar air turbine system which includes a demonstration of a high-temperature pressurized air receiver combined with high-temperature thermal storage. Since the operation temperature of a solar air turbine system is much higher than that of conventional CSP systems, Lead-Bismuth Eutectic (LBE) alloy was chosen for its favorable high temperature heat transport properties and relative ease of storage. The heat test apparatus consisted of a LBE-air heat exchanger, storage tanks with internal heating elements and a pumping system developed by CSIRO. During the test, approximately 1,000 kg of LBE was successfully pumped while capturing and storing approximately 35MJ of solar energy. The test successfully transferred heat from the solar air receiver to the LBE, with the temperature of stored LBE reaching over 770 °C. This paper will present the concept of the test system, design of its components, procedures and results of the test, and also lessons learnt.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3