Reliability-Based Optimization With Discrete and Continuous Decision and Random Variables

Author:

McDonald Mark1,Mahadevan Sankaran1

Affiliation:

1. Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235

Abstract

Engineering design problems frequently involve both discrete and continuous random and design variables, and system reliability may depend on the union or intersection of multiple limit states. Solving reliability-based design optimization (RBDO) problems, where some or all of the decision variables must be integer valued, can be expensive since the computational effort increases exponentially with the number of discrete variables in discrete optimization problems, and the presence of both system and component level reliability makes RBDO more expensive. The presence of discrete random variables in a RBDO problem has usually necessitated the use of Monte Carlo simulation or some other type of enumeration procedure, both of which are computationally expensive. In this paper, the theorem of total probability is used to allow for the use of the first-order reliability method in solving mixed-integer RBDO problems. Single-loop RBDO formulations are developed for three classes of mixed-integer RBDO with both discrete and continuous random variables and component and system-level reliability constraints. These problem formulations can be solved with any appropriate discrete optimization technique. This paper develops, for each of the three problem classes, greedy algorithms to find an approximate solution to the mixed-integer RBDO problem with both component and system reliability constraints and/or objectives. These greedy algorithms are based on the solution of a relaxed formulation and require hardly additional computational expense than that required for the solution of the continuous RBDO problem. The greedy algorithms are verified by branch and bound and genetic algorithms. Also, this paper develops three algorithms, which can allow for calibration of reliability estimation with a more accurate reliability analysis technique. These algorithms are illustrated in the context of a truss optimization problem.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3