Effect of dc on the Formability of Ti–6Al–4V

Author:

Ross Carl D.1,Kronenberger Thomas J.1,Roth John T.1

Affiliation:

1. Penn State Erie, The Behrend College, Erie, PA 16563

Abstract

Recent research has demonstrated that the mechanical properties of metals are altered when an electrical current is passed through the material. These studies suggest that titanium alloys, due to their low formability and need for dramatic improvement, should be subjected to additional study. The research presented herein further investigates the use of electricity to aid in the bulk deformation of Ti–6Al–4V under tensile and compressive loads. Extensive testing is presented, which documents the changes that occur in the formability of titanium due to the presence of an electrical current at varying current densities. Using carefully designed experiments, this study also characterizes and isolates the effect of resistive heating from the overall effect due to the electrical flow. This study clearly indicates that electrical flow affects the material beyond that which can be explained through resistive heating. The results demonstrate that an applied electrical current within the material during mechanical loading can greatly decrease the force needed to deform the titanium while also dramatically enhancing the degree to which it can be worked without fracturing. Isothermal testing further demonstrates that the changes are significantly beyond that which can be accounted for due to increases in the titanium’s temperature. The results are also supported by data from tests using pulsed and discontinuously applied current. Furthermore, current densities are identified that cause an enhanced formability behavior to occur. Overall, this work fully demonstrates that an electrical current can be used to significantly improve the formability of Ti–6Al–4V and that these improvements far exceed that which can be explained by resistive heating.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference19 articles.

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3