Unsteady Total Temperature Measurements Downstream of a High Pressure Turbine

Author:

Buttsworth D. R.1,Jones T. V.1,Chana K. S.2

Affiliation:

1. University of Oxford, Oxford, UK

2. DRA Pyestock, Farnborough, UK

Abstract

An experimental technique for the measurement of flow total temperature in a turbine facility is demonstrated. Two thin film heat transfer gauges located at the stagnation point of fused quartz substrates are operated at different temperatures in order to determine the flow total temperature. With this technique, no assumptions regarding the magnitude of the convective heat transfer coefficient are made. Thus, the probe can operate successfully in unsteady compressible flows of arbitrary composition and high free-stream turbulence levels without a heat transfer law calibration. The operation of the total temperature probe is first demonstrated using a small wind tunnel facility. Based on results from the small wind tunnel tests, it appears that the probe total temperature measurements are accurate to within ± 1K. Experiments using the probe downstream of a high pressure turbine stage are then described. Both high and low frequency components of the flow total temperature can be accurately resolved with the present technique. The probe measures a time-averaged flow total temperature that is in good agreement with thermocouple measurements made downstream of the rotor. Frequencies as high as 182 kHz have been detected in the spectral analysis of the heat flux signals from the total temperature probe. Through comparison with fast-response aerodynamic probe measurements, it is demonstrated that at the current measurement location, the total temperature fluctuations arise mainly due to the isentropic extraction of work by the turbine. The present total temperature probe is demonstrated to be an accurate, robust, fast-response device that is suitable for operation in a turbomachinery environment.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsteady loss in a high pressure turbine stage;International Journal of Heat and Fluid Flow;2003-10

2. A Fast-Response High Spatial Resolution Total Temperature Probe Using a Pulsed Heating Technique;Journal of Turbomachinery;1998-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3