Intermittent Flow and Thermal Structures of Accelerating Transitional Boundary Layers: Part 2 — Fluctuation Quantities

Author:

Wang Ting1,Keller F. Jeffrey1

Affiliation:

1. Clemson University, Clemson, SC

Abstract

The conditionally sampled fluctuation quantities of non-accelerating and accelerating heated transitional boundary layers were analyzed. The results indicated that the values of u′, v′, uv, and ut in the turbulent part of the transitional flow were higher than those values in the fully-developed turbulent flow. These higher values were believed to be manifestations of the vigorous activities involved in the transition process. The contributions to the unconditioned u′ by “mean-step” change due to the alternating behavior between turbulent and non-turbulent flows are about 20% in the near-wall region, but are negligible for Y+ > 30. The turbulent part uv values are higher than the fully turbulent and unconditioned values in the inner boundary layer but lower in the outer boundary layer. The mean-step change has negligible effect on unconditioned uv values. As acceleration increases, both u′ and t′ in the turbulent part are suppressed; however, turbulent part u′ is still higher than the unconditioned u′. Acceleration promotes streamwise Reynolds heat flux (ut) transport in both turbulent and non-turbulent parts. A second peak of the turbulent part ut occurs at around Y+ = 120 as acceleration increases. The turbulent part eddy viscosity values are much lower than those in the fully turbulent flow.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3