Analysis of Fluid Flow and Heat Transfer in Corrugated Perforated Plate Fin Heat Sinks

Author:

Upalkar Shripad A.1,Gakhar Saksham1,Krishnan Shankar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400 076, India

Abstract

Abstract This paper reports a mathematical model for predicting the fluid and heat flow characteristics of a Z-shaped corrugated perforated plate heat sink. Experiments were carried out to validate overall pressure drop as well as heat transfer predictions. A two-pronged approach was undertaken to design a corrugated perforated fin geometry: (a) macroscopic packaging, where the flow is distributed into conduits before being fed into perforated plates, and (b) microscopic design, where the pores are sized to maximize heat dissipation. A methodology typically used for predicting flow maldistribution is extended for packaging porous perforated plates in the macroscopic approach. An illustrative study is carried that estimates the optimum number of porous perforated plate fins that can be packaged within a given volume under fixed pressure drop constraint. In the microscopic approach, an order of magnitude analysis was carried out to decide the optimum diameter to maximize the heat transfer rate and expression for optimum diameter, and maximum achievable heat flux is proposed. Numerical simulations were carried out by considering full perforated plate porous fin geometry and single-channel geometry, and good agreement in their results was found. Finally, this study elaborates on the importance of achieving uniform flow distribution across the porous perforated plate fins.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3