Anomalous Enhancement of Heat Transfer to H2O/CO2 Mixtures in Near-Critical Region

Author:

Zhang Hanlin1,Wu Haomin1,Li Sha1,Liu Dong1,Li Qiang1

Affiliation:

1. MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China

Abstract

Abstract Heat transfer to supercritical H2O/CO2 mixtures (24 MPa, 310 to 430 °C, and CO2 mass fractions up to 18.5%), the working fluids of a novel power generation system with coal gasified in supercritical water, was experimentally investigated for typical working conditions of this system. For these conditions, i.e., high mass velocities (above 1200 kg m−2 s−1) and low heat flux (below 300 kW m−2), the convection heat transfer coefficients (HTCs) of supercritical pure fluids usually increase with temperature, peak near the pseudo-critical point, i.e., heat transfer enhancement, and then decrease for higher temperatures. Here, we experimentally demonstrated a new heat transfer enhancement phenomenon for supercritical H2O/CO2 mixtures. A high-temperature and high-pressure apparatus was setup to measure the convection HTCs of the supercritical H2O/CO2 mixtures. Experimental results show that surprisingly two distinct peaks of convection HTCs appear, with one corresponding temperature being the pseudo-critical point of the H2O/CO2 mixture, i.e., the thermophysical property variation induced mechanism, and the other one being the critical miscible point of the mixture, i.e., the dissolution-induced mechanism. These results pave the way to efficient heat transfer devices that use supercritical mixtures as heat transfer fluids.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3