On a Spring-Network Model and Effective Elastic Moduli of Granular Materials

Author:

Alzebdeh K.1,Ostoja-Starzewaski M.2

Affiliation:

1. Ergotron, Inc., 1181 Trapp Road, St. Paul, MN 55121

2. Institute of Paper Science and Technology and Georgia Institute of Technology, 500 10th Street, N.W., Atlanta, GA 30318-5794

Abstract

Two challenges in mechanics of granular media are taken up in this paper: (i) development of adequate numerical discrete element models of topologically disordered granular assemblies, and (ii) calculation of macroscopic elastic moduli of such materials using effective medium theories. Consideration of the first one leads to an adaptation of a spring-network (Kirkwood) model of solid-state physics to disordered systems, which is developed in the context of planar Delaunay networks. The model employs two linear springs: a normal one along an edge connecting two neighboring vertices (grain centers) which accounts for normal interactions between the grains, as well as an angular one which accounts for angle changes between two edges incident onto the same vertex; edges remain straight and grain rotations do not appear. This model is then used to predict elastic moduli of two-phase granular materials—random mixtures of soft and stiff grains —for high coordination numbers. It is found here that an effective Poisson’s ratio, νeff, of such a mixture is a convex function of the volume fraction, so that νeff may become negative when the individual Poisson’s ratios of both phases are both positive. Additionally, the usefulness of three effective medium theories—perfect disks, symmetric ellipses, and asymmetric ellipses—is tested.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3