Optimization of Moderator Design for Explosive Detection by Thermal Neutron Activation Using a Genetic Algorithm

Author:

Koreshi Zafar Ullah1,Khan Hamda1

Affiliation:

1. Department of Mechatronics Engineering, Air University, Islamabad 44000, Pakistan e-mail:

Abstract

An optimal design analysis is carried out for an explosives’ detection system (EDS) based on thermal neutron activation (TNA) of a sample under investigation. The objective of this work is to use a genetic algorithm (GA) to obtain the optimized moderator design that would yield the “best” signal in a detection system. In a preliminary analysis, a full Monte Carlo (MC) simulation is carried out to estimate the effectiveness of various moderators, namely, water, graphite, and beryllium with respect to radiative capture (n,γ) reactions in a sample under investigation. Since MC simulation is computationally “expensive,” it is generally not used for random-search-based optimization analysis. Thus, more efficient methods are required for the design of optimal nuclear systems, where neutron transport is accurately modeled and iteratively solved for estimating the effect of independent design parameters. This paper proposes a computational scheme in which GA is coupled with the two-group neutron diffusion equation (DE) for carrying out an optimization analysis. The coupled GA-DE optimization scheme is demonstrated for obtaining the optimal moderator design. It is found that with considerably less computational effort than in an elaborate MC computation, the GA-DE approach can be used for the optimal design of detection systems.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference20 articles.

1. DETECTION OF IMPROVISED EXPLOSIVES (IE) AND EXPLOSIVE DEVICES (IED)

2. Neutron Techniques for Detection of Explosives

3. A Review of Conventional Explosives Detection Using Active Neutron Interrogation;J. Radioanal. Nucl. Chem.,2014

4. Experimental Validation of MCNP Simulations for the EURITRACK Tagged Neutron Inspection System;Nucl. Instrum. Methods Phys. Res., Sect. B,2007

5. Photon and Neutron Interrogation Techniques for Chemical Explosives Detection in Air Cargo: A Critical Review;Nucl. Instrum. Methods Phys. Res., Sect. A,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3