Affiliation:
1. State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
In this paper, three-dimensional numerical simulations with renormalization-group (RNG) k-ε model are performed for the air-side heat transfer and fluid flow characteristics of wavy fin-and-tube heat exchanger with delta winglet vortex generators. The Reynolds number based on the tube outside diameter varies from 500 to 5000. The effects of different geometrical parameters with varying attack angle of delta winglet (β=30 deg, β=45 deg, and β=60 deg), tube row number (2–4), and wavy angle of the fin (θ=0–20 deg) are examined. The numerical results show that each delta winglet generates a downstream main vortex and a corner vortex. The longitudinal vortices are disrupted by the downstream wavy trough and only propagate a short distance along the main flow direction but the vortices greatly enhance the heat transfer in the wake region behind the tube. Nusselt number and friction factor both increase with the increase in the attack angle β, and the case of β=30 deg has the maximum value of j/f. The effects of the tube row number on Nusselt number and friction factor are very small, and the heat transfer and fluid flow become fully developed very quickly. The case of θ=5 deg has the minimum value of Nusselt number, while friction factor always increases with the increase in wavy angle. The application of delta winglet enhances the heat transfer performance of the wavy fin-and-tube heat exchanger with modest pressure drop penalty.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献