Stochastic Dynamic Load Identification on an Uncertain Structure With Correlated System Parameters

Author:

Wu Shaoqing1,Sun Yanwei2,Li Yanbin3,Fei Qingguo4

Affiliation:

1. Department of Engineering Mechanics,Southeast University,Nanjing, Jiangsu 211189, Chinae-mail: cesqwu@seu.edu.cn

2. School of Mechanical Engineering,Southeast University,Nanjing, Jiangsu 211189, Chinae-mail: syw@seu.edu.cn

3. School of Mechanical Engineering,Southeast University,Nanjing, Jiangsu 211189, Chinae-mail: lyb@seu.edu.cn

4. Institute of Aerospace Machinery and Dynamics,Southeast University,Nanjing, Jiangsu 211189, Chinae-mail: qgfei@seu.edu.cn

Abstract

Abstract A stochastic dynamic load identification algorithm is proposed for an uncertain dynamic system with correlated random system parameters. The stochastic Green's function is adopted to establish the relationship between the Gaussian excitation and the response. The Green's function is approximated by the second-order perturbation method, and orthogonal polynomial chaos bases are adopted to replace the corresponding bases in the Tayler series. The stochastic system responses and the stochastic forces are then represented by the polynomial chaos expansion (PCE) and the Karhunen–Loève expansion (KLE), respectively. A unified probabilistic framework for the stochastic dynamic problem is formulated based on the PCE. The stochastic load identification problem of an uncertain dynamic system is then transformed into a stochastic load identification problem of an equivalent deterministic system with the orthogonality of the PCE. Numerical simulations and experimental studies with a cantilever beam under a concentrate stochastic force are conducted to estimate the statistical characteristics of the stochastic load from the stochastic structural response samples. Results show that the proposed method has good accuracy in the identification of force's statistics when the level of uncertainty in the system parameters is not small. Large errors in the identified statistics may occur when the correlation in the random system parameters is neglected. Different correlation lengths for the random system parameters are investigated to show the effectiveness and accuracy of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3