Processing of Raney-Nickel Catalysts for Alkaline Fuel Cell Applications

Author:

Linnekoski J. A.1,Krause A. O. I.1,Keskinen Jari2,Lamminen J.3,Anttila T.4

Affiliation:

1. Laboratory of Industrial Chemistry, Helsinki University of Technology, P.O. Box 6100, FI-02015 TKK, Finland

2. VTT Processes, Hermiankatu 8 G, P.O. Box 16071, FI-33101 Tampere, Finland

3. Laboratory of Applied Thermodynamics, Helsinki University of Technology, Espoo, Finland

4. Oy Hydrocell Ltd., Minkkikatu 1-3, FI-04430 Järvenpää, Finland

Abstract

Platinum and other platinum group metals, either as singles or in combinations, have been preferred for use in low temperature fuel cells, mainly alkaline fuel cells (AFCs), polymer membrane electrolyte fuel cells (PEMs), and direct methanol fuel cells (DMFCs), for hydrogen oxidation reaction (HOR). However, also the Raney-nickel catalyst, which is among the most active non-noble metals for the HOR, has been the target of interest, especially in AFCs. However, electrodes with nonsupport Raney-nickel catalysts have been reported to suffer from insufficient conductivity. So, in this work, in order to enhance the electrical conductivity in the catalyst layer and to increase the catalytic activity, the Raney-nickel catalysts were alloyed with carbon in a planetary-type ball mill. In some samples platinum was added chemically to still enhance the catalytic properties. The activity of the processed materials was tested in the anode reaction of the alkaline fuel cell by measuring the half-cell polarization curves. It was found that the effective mixing of Raney-nickel powder and carbon in the ball mill was beneficial compared with poorer mixing in the knife mill. However, in order to achieve the same current densities at the same polarization level as the commercial Pt catalyst (2mg∕cm2), much higher Raney-nickel contents (73mg∕cm2) were needed. Good contact between Raney-nickel and conductive material (carbon) in the catalyst layer of the alkaline fuel cell electrode can improve the performance of the Raney-nickel catalyst in the hydrogen oxidation reaction. The polarization was lowered especially at the higher current densities (>250mA∕cm2).

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3