Interface Characterization of Al–Cu Microlaminates Fabricated By Electrically Assisted Roll Bonding

Author:

Moradi Marzyeh1,Ng Man-Kwan2,Lee Taekyung2,Cao Jian2,Picard Yoosuf N.3

Affiliation:

1. Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Roberts Engineering Hall, Pittsburgh, PA 15213

2. Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111

3. Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Roberts Engineering Hall, Pittsburgh, PA 15213 e-mail:

Abstract

Interface characteristics of Al/Cu microlaminates fabricated by an electrically assisted roll bonding (EARB) process were studied to understand the underlying physical/chemical phenomena that lead to bond strength enhancement when applying electrical current during deformation. Peel tests were conducted for the Al/Cu roll-bonded laminates produced under 0 A, 50 A, and 150 A applied current. After peel tests using a microtensile machine, the fractured surfaces of both the Al and Cu–sides were examined using scanning electron microscopy (SEM) for fractography and SEM-based energy dispersive (EDS) analysis. Results revealed the strong dependence of the fracture path and its morphology on the strength of the bond, which is influenced by various phenomena occurring at the interface during EARB, such as microextrusion through surface microcracks, possible formation of intermetallic components and thermal softening during simultaneous application of strain and high current density.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3