Effect of Low-Frequency Modulation on Deformation and Material Flow in Cutting of Metals

Author:

Yeung Ho1,Guo Yang2,Mann James B.2,Dale Compton W.1,Chandrasekar Srinivasan1

Affiliation:

1. Center for Materials Processing and Tribology, School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN 47907 e-mail:

2. M4 Sciences LLC, 1201 Cumberland Avenue, Suite A, West Lafayette, IN 47906 e-mail:

Abstract

The deformation field, material flow, and mechanics of chip separation in cutting of metals with superimposed low-frequency modulation (<1000 Hz) are characterized at the mesoscale using high-speed imaging and particle image velocimetry (PIV). The two-dimensional (2D) system studied involves a sharp-wedge sliding against the workpiece to remove material, also reminiscent of asperity contacts in sliding. A unique feature of the study is in situ mapping of material flow at high resolution using strain fields and streaklines and simultaneous measurements of tool motions and forces, such that instantaneous forces and kinematics can be overlaid onto the chip formation process. The significant reductions in specific energy obtained when cutting with modulation are shown to be a consequence of discrete chip formation with reduced strain levels. This strain reduction is established by direct measurements of deformation fields. The results have implications for enhancing sustainability of machining processes and understanding surface deformation and material removal in wear processes.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3