Subpixel Temperature Measurements in Plasma Jet Environments Using High-Speed Multispectral Pyrometry

Author:

Fu Tairan1,Liu Jiangfan2,Duan Minghao2,Li Sen3

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China e-mail:

2. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

A high-speed (2 kHz) near-infrared (1.0–1.65 μm) multispectral pyrometer was used for noninvasive measurements of the subpixel temperature distribution near the sharp leading edge of a wing exposed to a supersonic plasma jet. The multispectral pyrometer operating in the field measurement mode was able to measure the spatial temperature distribution. Multiple spectra were used to determine the temperature distributions in the measurement region. The spatial resolution of the multispectral pyrometer was not restricted to one “pixel” but was extended to subpixel accuracy (the temperature distribution inside one pixel in the image space corresponding to the point region in the object space). Thus, this system gives high-speed, multichannel, and long working time spatial temperature measurements with a small data stream from high-speed multispectral pyrometers. The temperature distribution of the leading edge of a ceramic wing was investigated with the leading edge exposed to extreme convective heating from a high-enthalpy plasma flow. Simultaneous measurements with a multispectral pyrometer and an imaging pyrometer verify the measurement accuracy of the subpixel temperature distribution. Thus, this multispectral pyrometry can provide in situ noninvasive temperature diagnostics in supersonic plasma jet environments.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Ministry of Science and Technology of the People's Republic of China

Science Fund for Creative Research Groups

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3