Analysis of the Bifurcating Duct of an Inlet Particle Separator in Transonic Flow Conditions

Author:

Castaldi Marco1,Mayo Ignacio1,Demolis Jacques2,Eulitz Frank11

Affiliation:

1. von Karman Institute for Fluid Dynamics Turbomachinery and Propulsion Department, , Rhode Saint Genèse 1640 , Belgium

2. Safran Helicopter Engines , Bordes 64510 , France

Abstract

Abstract To increase the reliability of turboprop and turboshaft engines in extreme operating conditions, filtering protections such as inlet particle separators (IPSs) can be installed at the intake. The flow inside an IPS is highly 3D and unsteady, with fluctuations especially pronounced when transonic conditions are reached. Locally, shocks can occur, increasing the pressure losses. In this paper, we aim at providing the transonic analysis of an industrial IPS designed for aerodynamic lab testing. As a first step, we define the threshold beyond which sonic conditions are reached in the boundary cross sections of the IPS, in terms of inlet total pressure and Reynolds number, by means of a 1D semi-empirical model. Second, we select a critical configuration, very close to these conditions, and we perform CFD simulations to analyze the locations and evolution of the transonic flow inside the IPS. Different models are presented, i.e., steady and unsteady Reynolds-averaged Navier–Stokes, detached eddy simulation, and large eddy simulation, characterized by three levels of resolution (based on the grid size). The results show the evolution of some transonic shocks: the steady-state model is only providing information on averaged quantities, while the time-resolved simulations offer a more precise overview in the time domain (velocity and Mach number fluctuations). The analysis in the frequency domain reveals the frequencies of the transonic fluctuations, which can negatively affect the IPS. Finally, we discuss three alternative designs to effectively improve the operating range and mitigate the risks related to the transonic instabilities, comparing the differences in separation efficiency with respect to the baseline case. The results prove that the optimal design choice is given by the trade-off between operating range, pressure losses, and separation efficiency.

Funder

European Commission

Publisher

ASME International

Reference21 articles.

1. Turboshaft Engine Air Particle Separation;Filippone;Prog. Aerosp. Sci.,2010

2. Erosion and Deposition in Turbomachinery;Hamed;J. Propul. Power,2006

3. Efficiency of an Inertial Particle Separator;Barone;J. Propul. Power,2015

4. Particle Dynamics of a 2-D Inertial Particle Separator;Barone,2014

5. A 2-d Inertial Particle Separator Research Facility;Barone,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3