An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part I

Author:

Islam Md Tauhidul1,Reddy J. N.2,Righetti Raffaella3

Affiliation:

1. Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77840 e-mail:

2. Professor Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 e-mail:

3. Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77840 e-mail:

Abstract

An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical properties. Specifically, in this paper, the inclusion is considered to be less permeable than the background. The cylindrical sample is compressed using a constant pressure within two frictionless plates and is allowed to expand in an unconfined way along the radial direction. Analytical expressions for the effective Poisson's ratio (EPR) and fluid pressure inside and outside the inclusion are derived and analyzed. The theoretical results are validated using finite element models (FEMs). Statistical analysis shows excellent agreement between the results obtained from the developed model and the results from FEM. Thus, the developed theoretical model can be used in medical imaging modalities such as ultrasound poroelastography to extract the mechanical parameters of tissues and/or to better understand the impact of different mechanical parameters on the estimated displacements, strains, stresses, and fluid pressure inside a tumor and in the surrounding tissue.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3