Numerical Simulations of an Active-Stressing Technique for Delaying Fracture During Cutting of Alumina

Author:

Akarapu R.12,Segall A. E.12

Affiliation:

1. Mem. ASME

2. Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802

Abstract

During a variety of high-speed cutting operations that can include both laser and traditional saw methods, full workpiece support is not always practical or even possible. As a result, costly premature fractures and associated damage such as chips, burrs, and cracks (ranging from the micro- all the way to the macroscale) can result. In most instances, the resulting stresses are primarily mechanical in nature and arise from the bending and/or twisting moments from the still attached scrap. Under these conditions, mixed-mode fracture is all but inevitable since the supporting section is continuously diminishing as the cut progresses. Given the predominantly mechanical, and therefore predictable, nature of the resulting stresses, it is conceivable that intentionally induced, compressive stresses due to an off-focus laser might be used to control (or at least, delay) such fractures. In this paper, the possibility of using a tailored laser-heating scenario ahead of a progressing cut to “actively” induce compressive thermal stresses to control fracture of a cantilevered plate was numerically investigated. A simulation of this active-stressing approach was achieved by using a customized finite-element formulation that was previously employed to model dual-beam laser machining. However, in this instance probabilistic fracture mechanics was used to quantify the influence of the induced compressive stresses on the time and nature of the fracture. The effect of important parameters such as CO2 beam diameter, incident power density, positioning of the laser with respect to cut, as well as timing were then studied with respect to the goal of reducing and/or delaying the likelihood of fracture.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference26 articles.

1. Laser Assisted Machining: An Overview;Chryssolouris;J. Manuf. Sci. Eng.

2. Thick and Thin Film Manufacturers Find Laser Machining Cost Effective;McDermott;Hybrid Circuit Technol.

3. Laser Cutting Speeds for Ceramic Tile: A Theoretical-Empirical Comparison;Black;Opt. Laser Technol.

4. Crack Formation During Laser Cutting of Silicon;Gross;J. Appl. Phys.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3