Accelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method

Author:

Cano Jaime A.1,Stewart Calvin M.1

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at El Paso, 500 West University Avenue, Suite A126, El Paso, TX 79968

Abstract

Abstract In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire–Cano–Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing is a long-term continuous process; in fact, the ASME B&PV III requires that 10,000+ h of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The SSM has been developed, which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750 °C and predictions are compared to conventional creep testing data. The WCS model has proven to make long-term predictions for stress-rupture, MCSR, creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked by the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are postaudit validated using the National Institute of Material Science database. Similarly, the MCSR predictions are compared from previous studies. Finally, the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and industrial gas turbines.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Development of High- and Intermediate-Pressure Steam Turbine Rotors for Efficient Fossil Power Generation Technology,2018

2. Materials for Advanced Ultrasupercritical Steam Turbines—Advanced Ultra-Supercritical Component Demonstration,2016

3. ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH—Class 1;ASME,2015

4. Probabilistic Creep Modeling of 304 Stainless Steel Using a Modified Wilshire Creep-Damage Model,2020

5. Predictions of Long-Term Creep Life for the Family of 9–12 wt% Cr Martensitic Steels;J. Alloys Compd.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3