Turbulence Modeling of Forced Convection Heat Transfer in Two-Dimensional Ribbed Channels

Author:

Elsaadawy E.1,Mortazavi H.1,Hamed M. S.1

Affiliation:

1. Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada

Abstract

Although the problem of 2D ribbed channels has been studied heavily in the literature as a benchmark or basic case for cooling of electronic packing, there is still a contradiction in the literature about the suitable turbulence model that should be used in such a problem. The accuracy of the computational predictions of heat transfer rates depends mostly on the choice of the proper turbulence model that is capable of capturing the physics of the problem, and on the corresponding wall treatment. The main objective of this work is to identify the proper turbulence model to be used in thermal analysis of electronic systems. A number of available turbulence models, namely, the standard k-ε, the renormalization group k-ε, the shear stress transport (SST), the k-ω, and the Reynolds stress models, have been investigated. The selection of the most appropriate turbulence model has been based upon comparisons with both direct numerical simulations (DNSs) and experimental results of other works. Based on such comparisons, the SST turbulence model has been found to produce results in very good agreement with the DNS and experimental results and hence it is recommended as an appropriate turbulence model for thermal analysis of electronic packaging.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference17 articles.

1. Thermal Management of Microelectronic Equipment

2. Challenges in Electronic Cooling-Opportunities for Enhanced Thermal Management Techniques-Microprocessor Liquid Cooled Mini-Channel Heat Sink;Schmidt;Heat Transfer Eng.

3. Flow and Forced Convection Characteristics of Turbulent Flow Through Parallel Plates With Periodic Transverse Ribs;Luo;Numer. Heat Transfer, Part A

4. Comparison of Near-Wall Behavior and Its Effect on Heat Transfer for k-ω and k-ε Turbulence Models in Rib-Roughened 2D Channel;Bredberg

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3