Confined Jet Impingement With Boiling on a Variety of Enhanced Surfaces

Author:

Rau Matthew J.1,Garimella Suresh V.2

Affiliation:

1. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907

2. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:

Abstract

Confined jet impingement with boiling offers unique and attractive performance characteristics for thermal management of high heat flux components. Two-phase operation of jet impingement has been shown to provide high heat transfer coefficients while maintaining a uniform temperature over a target surface. This can be achieved with minimal increases in pumping power compared to single-phase operation. To investigate further enhancements in heat transfer coefficients and increases in the maximum heat flux supported by two-phase jet impingement, an experimental study of surface enhancements is performed using the dielectric working fluid HFE-7100. The performance of a single, 3.75 mm-diameter jet orifice is compared across four distinct copper target surfaces of varying enhancement scales: a baseline smooth flat surface, a flat surface coated with a microporous layer, a surface with macroscale area enhancement (extended square pin fins), and a hybrid surface on which the pin fins are coated with the microporous layer. The heat transfer performance of each surface is compared in single- and two-phase operation at three volumetric flow rates (450 ml/min, 900 ml/min, and 1800 ml/min); area-averaged heat transfer parameters and pressure drop are reported. The mechanisms resulting in enhanced performance for the different surfaces are identified, with a special focus on the coated pin fins. This hybrid surface showed the best enhancement of all those tested, and resulted in an extension of critical heat flux (CHF) by a maximum of 2.42 times compared to the smooth flat surface at the lowest flow rate investigated; no increase in the overall pressure drop was measured.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3