Steady Temperature in a Rotating Cylinder Subject to Surface Heating and Convective Cooling

Author:

Gecim B.1,Winer W. O.1

Affiliation:

1. Georgia Institute of Technology, School of Mechanical Engineering, Atlanta, Ga. 30332

Abstract

This study utilizes an integral transform technique in order to solve the heat conduction equation in cylindrical coordinates. The major assumption is the high speed (i.e., large Peclet number) assumption. The boundary value problem is governed by the parabolic form of the heat equation representing the quasi-stationary state. The boundary conditions are a combination of Neumann and mixed type due to simultaneous heating and cooling on the surface of the cylinder. The surface temperature reaches a peak value over the heat source and gradually decreases to a nearly constant level over the cooling zone. Thermal penetration in the radial direction is shown to be only a few percent of the radius, leaving the bulk of the body at a uniform temperature. The width of the heat source and the total heat input are shown to be effective on the level of temperature whereas the input distribution is shown to be unimportant. The dimensionless numbers involved are the Biot and the Peclet numbers where the solution is governed by the ratio of the Biot number to the square root of the Peclet number.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3