Computer Modeling of Electromagnetic Fields and Fluid Flows for Edge Containment in Continuous Casting

Author:

Chang Fon-Chieh1,Hull John R.1

Affiliation:

1. Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439

Abstract

A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel (Ispat Industries Ltd.) for twin-roll casting. This mathematical model can greatly shorten casting research on the use of EM fields for liquid metal containment and control. It can also optimize the existing casting processes and minimize expensive, time-consuming full-scale testing. The model was verified by comparing predictions with experimental results of liquid metal containment and fluid flow in EM edge dams designed at Inland Steel (Ispat Industries Ltd.) for twin-roll casting. Numerical simulation was performed by coupling a three-dimensional (3D) finite-element EM code (ELEKTRA) and a 3D finite-difference fluids code (CaPS-EM) to solve Maxwell’s equations, Ohm’s law, Navier-Stokes equations, and transport equations of turbulence flow in a casting process that uses EM fields. ELEKTRA is able to predict the eddy-current distribution and EM forces in complex geometry. CaPS-EM is capable of modeling fluid flows with free surfaces and dynamic rollers. The computed 3D magnetic fields and induced eddy currents in ELEKTRA are used as input to flow-field computations in CaPS-EM. Results of the numerical simulation compared well with measurements obtained from both static and dynamic tests.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference16 articles.

1. 3-D Numerical Simulation of Electromagnetic Dam of Twin Roll Casting Using Edge Element Method;Bao;J. Mater. Sci. Technol.

2. Two-Dimension Finite Element Simulations on the Electromagnetic Containment in Twin-Roll Strip Casting;Bao;J. Mater. Sci. Technol.

3. Electromagnetic Side Dam in the Casting of Strip with the Belt∕Roll Process;Hashemi;Magn. Gidrodin.

4. Finite Element and Physical Simulations of Non-Steady State Metal Flow and Temperature Distribution in Twin Roll Strip Casting;Shiomi

5. Thin Strip Casting of Ni-Base Alloys by Twin Roll Process;Yukumoto

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3