Multiphase Transport Phenomena in the Diffusion Zone of a PEM Fuel Cell

Author:

Senn S. M.1,Poulikakos D.1

Affiliation:

1. Department of Mechanical Engineering, Laboratory of Thermodynamics in Emerging Technologies, Swiss Federal Institute of Technology(ETH Zurich), CH-8092 Zurich, Switzerland

Abstract

Abstract In this paper, a thorough model for the porous diffusion layer of a polymer electrolyte fuel cell (PEFC) is presented that accounts for multicomponent species diffusion, transport and formation of liquid water, heat transfer, and electronic current transfer. The governing equations are written in nondimensional form to generalize the results. The set of partial differential equations is solved based on the finite volume method. The effect of downscaling of channel width, current collector rib width, and diffusion layer thickness on the performance of polymer electrolyte membrane (PEM) fuel cells is systematically investigated, and optimum geometric length ratios (i.e., optimum diffusion layer thicknesses, optimum channel, and rib widths) are identified at decreasing length scales. A performance number is introduced to quantify losses attributed to mass transfer, the presence of liquid water, charge transfer, and heat transfer. Based on this model it is found that microchannels (e.g., as part of a tree network channel system in a double-staircase PEM fuel cell) together with diffusion layers that are thinner than conventional layers can provide substantially improved current densities compared to conventional channels with diameters on the order of 1 mm, since the transport processes occur at reduced length scales. Possible performance improvements of 29, 53, and 96 % are reported.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3