Numerical Modeling of Simultaneous Heat and Moisture Transport in Fire Protective Suits Under Flash Fire Exposure and Evaluation of Second-Degree Burn Time

Author:

Rajput Bhavna1,Dubey Ritambhara1,Ray Bahni1,Das Apurba2,Talukdar Prabal1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

2. Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

Abstract An improved numerical model is developed for coupled heat and moisture transport in fire protective suits exposed to flash fire. This model is combined with Pennes' bioheat transfer model and subsequently, second-degree burn time is estimated using Henriques' burn integral. Natural convection is considered inside the airgap present between the multilayer clothing ensemble and the skin. Comparisons of temperature and moisture distribution within the multilayer clothing, airgap, and the skin during the exposure are presented considering combined heat and moisture transport and only heat transport. The effect of moisture transport on the protective performance of the fire protective suits is shown. The impact of both horizontal and vertical airgap orientations on second-degree burn time is studied. The effect of temperature-dependent thermophysical properties, relative humidity, fiber regain, different exposure conditions, and fabric combinations for the fire protective suits on burn time is analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3