Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury

Author:

Font-Llagunes Josep M.1,Lugrís Urbano2,Clos Daniel1,Alonso F. Javier3,Cuadrado Javier2

Affiliation:

1. Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona 08028, Spain

2. Laboratory of Mechanical Engineering, University of La Coruña, Mendizábal s/n, Ferrol 15403, Spain

3. Department of Mechanical, Energetics and Materials Engineering, University of Extremadura, Avda. de Elvas s/n, Badajoz 06006, Spain

Abstract

Abstract Walking rehabilitation using exoskeletons is of high importance to maximize independence and improve the general well-being of spinal cord injured subjects. We present the design and control of a lightweight and modular robotic exoskeleton to assist walking in spinal cord injured subjects who can control hip flexion, but lack control of knee and ankle muscles. The developed prototype consists of two robotic orthoses, which are powered by a motor-harmonic drive actuation system that controls knee flexion–extension. This actuation module is assembled on standard passive orthoses. Regarding the control, the stance-to-swing transition is detected using two inertial measurement units mounted on the tibial supports, and then the corresponding motor performs a predefined flexion–extension cycle that is personalized to the specific patient’s motor function. The system is portable by means of a backpack that contains an embedded computer board, the motor drivers, and the battery. A preliminary biomechanical evaluation of the gait-assistive device used by a female patient with incomplete spinal cord injury at T11 is presented. Results show an increase of gait speed (+24.11%), stride length (+7.41%), and cadence (+15.56%) when wearing the robotic orthoses compared with the case with passive orthoses. Conversely, a decrease of lateral displacement of the center of mass (−19.31%) and step width (−13.37% right step, −8.81% left step) are also observed, indicating gain of balance. The biomechanical assessment also reports an overall increase of gait symmetry when wearing the developed assistive device.

Funder

“la Caixa” Banking Foundation

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3