Plastic Collapse Stresses Based on Flaw Combination Rules for Pipes Containing Two Circumferential Similar Flaws

Author:

Hasegawa Kunio1,Li Yinsheng1,Kim Yun-Jae2,Lacroix Valery3,Strnadel Bohumir4

Affiliation:

1. Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan

2. Korea University, 1,5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701, South Korea

3. Tractebel Engineering (ENGIE), Bd. Simon Bolivar 34-36, Brussels B-1000, Belgium

4. Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava-Poruba 708 33, Czech Republic

Abstract

When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service (FFS) codes. However, specific criteria of the rules are different among these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with two circumferential similar flaws were obtained by experiments, and the prediction procedure for collapse stresses for pipes with two similar flaws was developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with two similar flaws are compared with the stresses in compliance with the flaw combination criteria. It is shown that the calculated plastic collapse stresses based on the flaw combination criteria are significantly different from the experimental and analytical stresses.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3