Affiliation:
1. William B. Morgan Large Cavitation Channel, Naval Surface Warfare Center, Carderock Division, Memphis, TN 38113
2. Mechanical Engineering Department, University of Texas at Austin, Austin, TX 78712
Abstract
This study focused on the film cooling performance on the pressure side of a turbine vane subjected to high mainstream turbulence levels, with and without showerhead blowing. Whereas previous studies have measured the adiabatic effectiveness and heat transfer at the surface of the airfoil, the goal of this study was to examine the flow and thermal fields above the surface. These measurements included flow visualization, thermal profiles, and laser Doppler velocimetry. For comparison, adiabatic effectiveness was also measured. A mainstream turbulence level of Tu∞=20%, with integral length scale of seven hole diameters, was used. Particularly insightful is the discovery that the large-scale high mainstream turbulence causes a lateral oscillation of coolant jet resulting in a much wider time average distribution of coolant. Even with high mainstream turbulence, showerhead blowing was found to still cause a significantly increased dispersion of the pressure side coolant jets.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献