Development and Application of an Internal Heat Transfer Measurement Technique for Cooled Real Engine Components

Author:

Ali Asif1,Cocchi Lorenzo1,Picchi Alessio1,Facchini Bruno1,Cubeda Simone2

Affiliation:

1. Department of Industrial Engineering, University of Florence, Via S. Marta 3, Florence 50139, Italy

2. Baker Hughes, Turbomachinery Process Solutions, Via F. Matteucci 2, Florence 50127, Italy

Abstract

Abstract The aim of this work is to present the development and application of a measurement technique that allows to record internal heat transfer features of real components. In order to apply this method, based on similar approaches proposed in previous literature works, the component is initially heated up to a steady temperature, then a thermal transient is induced by injecting cool air in the internal cooling system. During this process, the external temperature evolution is recorded by means of an infrared (IR) camera. Experimental data are then exploited to run a numerical procedure, based on a series of transient finite element analyses of the component. In particular, the test duration is divided into an appropriate number of steps and, for each of them, the heat flux on internal surfaces is iteratively updated as to target the measured external temperature distribution. Heat flux and internal temperature data for all the time steps are eventually employed in order to evaluate the convective heat transfer coefficient via linear regression. This technique has been successfully tested on a cooled high-pressure vane of a Baker Hughes heavy-duty gas turbine, which was realized thanks to the development of a dedicated test rig at the University of Florence, Italy. The obtained results provide sufficiently detailed heat transfer distributions in addition to allowing to appreciate the effect of different coolant mass flow rates. The methodology is also capable of identifying defects, which is demonstrated by inducing controlled faults in the component.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

1. Turbine Blade Internal Cooling—Selected Experimental Approaches;Coletti

2. Cooling Hole Inspection,1987

3. Nondestructive Pulsed Infrared Quantitative Evaluation of Metals;Proc. SPIE,1996

4. Apparatus and Method for Inspecting Cooling Holes,1992

5. Thermography Inspection System for Gas Turbine Blades,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3