Low-Speed Vehicle Path-Tracking Algorithm Based on Model Predictive Control Using QPKWIK Solver

Author:

Zhang Yihuai1,Shi Baijun1,Hu Xizhi1,Ai Wandong1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510000, China

Abstract

Abstract Automated valet parking is a part of autonomous vehicles. Path tracking is a vital capability of autonomous vehicles. In the scenario of automatic valet parking, the existing control algorithm will produce a high tracking error and a high computational burden. This paper proposes a path-tracking algorithm based on model predictive control to adapt to low-speed driving. By using the model predictive control method and vehicle kinematics model, a path tracking controller is designed. Combining the dual algorithm to further optimize the solver, a new quadratic programming (QP) knows what it knows (QPKWIK) solver is proposed. The simulation results show that the solution time of the QPKWIK solver is 25% less than that of the QP solver, and the tracking error is reduced by up to 41% compared with the QP solver. In the parking lot, the tracking performance is tested under four common scenarios, and the experimental results show that this controller has better tracking performance.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference46 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear model predictive control of vehicle trajectory tracking using tilting technology;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-08-01

2. Automatic Parking Path Planning of Tracked Vehicle Based on Improved A* and DWA Algorithms;IEEE Transactions on Transportation Electrification;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3