Modeling, Realization, and Simulation of Thermo-Fluid Systems Using Singularly Perturbed Sliding Manifolds

Author:

Gordon Brandon W.1,Asada Harry2

Affiliation:

1. Department of Mechanical Engineering, Concordia University, Montreal, H3G 1M8 Canada

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

A new approach based on sliding control is presented for modeling and simulation of thermo-fluid systems described by differential-algebraic equations (DAEs). The dynamics of thermo-fluid systems are often complicated by momentum interactions that occur on a time scale that is orders of magnitude faster than the time scale of interest. To address this problem the momentum equation is often modeled using algebraic steady state approximations. This will, in general, result in a model described by nonlinear DAEs for which few control methods are currently applicable. In this paper, the modeling problem is addressed using an approach that systematically constructs an explicit state space approximation of the DAEs. The state space model can in turn be used with existing control methods. This procedure, known as realization, is achieved by solving an associated nonlinear control problem by combining boundary layer sliding control with the singular perturbation method. The necessary criteria for key properties such as convergence, stability, and controllability are established. Further, the new approach is illustrated using a vapor compression cycle example. This demonstrates significant advantages over directly modeling momentum interactions. [S0022-0434(00)00904-7]

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference16 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3