Experimental Studies on Energy and Exergy Analysis of a Single-Pass Parallel Flow Solar Air Heater

Author:

Raam Dheep G.1,Sreekumar A.1

Affiliation:

1. Centre for Green Energy Technology, Pondicherry University, Puducherry 605014, India e-mail:

Abstract

Solar air heaters (SAHs) are the simplest form of nonconcentrating thermal collectors. SAHs utilize solar thermal energy to increase the temperature of air for thermal applications of less than 80 °C. The energy efficiency of SAHs is significantly low due to poor convective heat transfer between the absorber and the air medium. In this present study, it is aimed to increase the convective heat transfer by modifying the absorber and the type of air flow inside the duct. Experimental studies were performed to study about the energy and exergy efficiencies of SAH with the absorber of longitudinal circular fins. The thermal analysis of the SAH is evaluated for five mass flow rates of 30, 45, 60, 75, and 90 kg/h m2 flowing inside the duct of thickness 100 mm. The impact of the flow rate on the absorber and air temperature, temperature difference (ΔT), energy and exergy efficiencies, irreversibility, improvement potential, sustainability, and CO2 reduction potential is studied. The experimental results show that the first and second laws of thermodynamic efficiency increase from 44.13% to 56.98% and from 24.98% to 36.62% by increasing the flow rate from 30 to 90 kg/h m2. The results conclude that the air flow duration inside the duct plays an important role in efficiency of the solar air heater. Therefore, lower flow rate is preferred to achieve maximum outlet air temperature and temperature difference.

Funder

Department of Science and Technology, Government of Kerala

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3