Method for Attaining Dimensionally Accurate Conditions for High-Resolution Three-Dimensional Printing Ceramic Composite Structures Using MicroCLIP Process

Author:

Ware Henry Oliver T.1,Sun Cheng1

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd. Rm. B224, Evanston, IL 60208

Abstract

Continuous liquid interface production (CLIP) utilizes projection ultraviolet (UV) light and oxygen inhibition to transform the sequential layered three-dimensional (3D) manufacturing into a continuous fabrication flow with tremendous improved fabrication speed and structure integrity. Incorporating ceramic particles to the photo-curable polymers allows for additive manufacturing of ceramic parts featuring sophisticated geometries, mitigating the difficulties associated with traditional manufacturing processes. The presence of ceramic particles within the ink, however, strongly scatters the incident UV light. In the high-resolution CLIP (microCLIP) process, the scattering effect can significantly alter the process characteristics, resulting in broadening of lateral feature dimensions alongside curing depth reduction. Varying exposure conditions to accommodate scattering additionally affects the oxygen deadzone thickness (DZ), which is dependent on power of incident light. This introduces a systematic defocusing error for large deadzone thickness to further complicate process control, such as the unwanted narrowing of part features. In this work, we developed a systematic framework for process optimization by balancing those effects via experimental characterization. We showed that the reported method can provide a set of optimal process parameters (UV power and stage speed) for high-resolution 3D fabrication in accommodating the distinct characteristics of given photo-curable ceramic ink. The method to optimize process parameter was validated experimentally via fabricating a gradient index Luneburg lens comprising densely packed woodpile building-blocks with a strut width of 100 μm and a layer thickness of 60 μm using microCLIP at dimensionally accurate exposure conditions.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3