Numerical Study on Mixed Convection and Entropy Generation of a Nanofluid in a Lid-Driven Square Enclosure

Author:

Nayak R. K.1,Bhattacharyya S.1,Pop I.2

Affiliation:

1. Department of Mathematics, IIT Kharagpur, Kharagpur 721302, India e-mail:

2. Department of Mathematics, Babes-Bolyai University, Cluj-Napoca 400084, Romania e-mail:

Abstract

A numerical investigation of mixed convection due to a copper–water nanofluid in an enclosure is presented. The mixed convection is governed by moving the upper lid of the enclosure and imposing a vertical temperature gradient. The transport equations for fluid and heat are modeled by using the Boussinesq approximation. A modified form of the control volume based SIMPLET algorithm is used for the solution of the transport equations. The fluid flow and heat transfer characteristics are studied for a wide range of Reynolds number and Grashof number so as to have the Richardson number greater or less than 1. The nanoparticle volume fraction is considered up to 20%. Heat flow patterns are analyzed through the energy flux vector. The rate of enhancement in heat transfer due to the addition of nanoparticles is analyzed. The entropy generation and Bejan number are evaluated to demonstrate the thermodynamic optimization of the mixed convection. We have obtained the enhancement rate in heat transfer and entropy generation in nanofluid for a wide range of parameter values.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3