Simulation study on a Domestic Solar/Heat Pump Heating System Incorporating Latent and Stratified Thermal Storage

Author:

Trinkl Christoph1,Zörner Wilfried1,Hanby Vic2

Affiliation:

1. Centre of Excellence for Solar Engineering, Ingolstadt University of Applied Sciences, Esplanade 10, D-85049 Ingolstadt, Germany

2. Institute of Energy and Sustainable Development, De Montfort University Leicester, The Gateway, Leicester, LE1 9BH, UK

Abstract

Both solar and heat pump heating systems are innovative technologies for sustaining ecological heat generation. They are gaining more and more importance due to the accelerating pace of climate change and the rising cost of limited fossil resources. Against this background, a heating system combining solar thermal collectors, heat pump, stratified thermal storage, and water/ice latent heat storage has been investigated. The major advantages of the proposed solar/heat pump heating system are considered to be its flexible application (suitable for new and existing buildings because of acceptable space demand), as well as the improvement of solar fraction (extended solar collector utilization time, enhanced collector efficiency), i.e., the reduction of electric energy demand for the heat pump by management of the source and sink temperatures. In order to investigate and optimize the heating system, a dynamic system simulation model was developed. On this basis, a fundamental control strategy was derived for the overall co-ordination of the heating system with particular regard to the performance of the two storage tanks. In a simulation study, a fundamental investigation of the heating system configuration was carried out and an optimization was derived for the system control, as well as the selection of components and their dimensioning. The influence of different parameters on the system performance was identified, where the collector area and the latent heat storage volume were found to be the predominant parameters for system dimensioning. For a modern one-family house of 120 m2 living area with a specific annual heat demand of 60 kWh/(m2 a) for both heating and domestic hot water, a solar collector area of 30 m2, and a latent heat store volume of 12.5 m3 are proposed for the location of Wuerzburg (Germany). In this configuration, the heating system reaches a seasonal performance factor of 4.6, meaning that 78% of the building’s and users’ heat demand are delivered by solar energy. The results show that the solar/heat pump heating system can give an acceptable performance using up-to-date components in a state-of-the-art building.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3