Deep Learning Toward Autonomous Ship Navigation and Possible COLREGs Failures

Author:

Perera Lokukaluge P.1

Affiliation:

1. Department of Technology and Safety, UiT The Arctic University of Norway, Tromso 9037, Norway

Abstract

Abstract A structured technology framework to address navigation considerations, including collision avoidance, of autonomous ships is the focus of this study. That consists of adequate maritime technologies to achieve the required level of navigation integrity in ocean autonomy. Since decision-making facilities in future autonomous vessels can play an important role under ocean autonomy, these technologies should consist of adequate system intelligence. Such system intelligence should consider localized decision-making modules to facilitate a distributed intelligence type strategy that supports distinct navigation situations in future vessels as agent-based systems. The main core of this agent consists of deep learning type technology that has presented promising results in other transportation systems, i.e., self-driving cars. Deep learning can capture helmsman behavior; therefore, such system intelligence can be used to navigate future autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning-type technologies, where adequate solutions to distinct navigation situations can be facilitated. Collision avoidance under situation awareness, as one of such distinct navigation situations (i.e., a module of the decision support layer), is extensively discussed. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e., possible regulatory failures, under situation awareness of autonomous ships is also presented with the possible solutions. Additional considerations, i.e., performance standards with the applicable limits of liability, terms, expectations, and conditions, toward evaluating ship behavior as an agent-based system in collision avoidance situations are also illustrated.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference29 articles.

1. Design of Autonomous and Manual Driving System for 4WIS4WID Vehicle;Li;IEEE Access,2016

2. European Roadmap Smart Systems for Automated Driving;Dokic,2015

3. Emerging Technologies With Disruptive Effects: A Review;Rahman;PERINTIS eJ.,2017

4. The First Ever Zero Emission, Autonomous Ship;Yara Birkeland,2019

5. Industrial IoT to Predictive Analytics: A Reverse Engineering Approach From Shipping;Perera,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3