Scale Effects on Heave Plates for Semi-Submersible Floating Offshore Wind Turbines: Case Study With a Solid Plain Plate

Author:

Bezunartea-Barrio Ana1,Fernandez-Ruano Sergio1,Maron-Loureiro Adolfo1,Molinelli-Fernandez Enrique1,Moreno-Buron Francisco1,Oria-Escudero Julio1,Rios-Tubio José1,Soriano-Gomez Cristina1,Valea-Peces Alvaro1,Lopez-Pavon Carlos2,Souto-Iglesias Antonio3

Affiliation:

1. INTA-CEHIPAR, Madrid, Spain

2. COREMARINE, Madrid, Spain

3. CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract

Abstract In the case of SPAR or semi-submersible platforms for floating wind turbines, it is beneficial in some cases to use heave plates that reduce their heave motion amplitude and/or tune their heave natural period. As part of the Hiprwind project, it was decided to study scale effects on the hydrodynamics of this element. To this aim, models of one leg of the platform, equipped with a heave plate without any reinforcements, were built. This model is a simplified representation of the actual one, which incorporates a vertical flap on the heave plate edge. The scales were 1:20, 1:27.6, and 1:45.45, with the former leading to added mass values of the order of 300 kg, becoming one of the largest models for which experiments with heave oscillations have been carried out. Decay tests starting from various amplitudes and forced oscillations tests for a range of frequencies and amplitudes were performed. It is shown in the paper that the influence of the scale factor on the hydrodynamic coefficients is weaker than the effect that the motion amplitude (characterized with the Keulegan–Carpenter (KC) number produces in them. This result is relevant because the selection of a representative KC is an important and somewhat arbitrary aspect to be set in the linear potential simulation codes in order to add viscous damping. What has been shown herein is that a right selection of KC has a larger impact on the models than the uncertainties due to eventual scale effects in the heave-plates dynamics.

Funder

CDTI

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3