Effect of Forced Convection Heat Transfer on Vapor Quality in Subcooled Flow Boiling

Author:

Kanatani Kentaro1

Affiliation:

1. Department of Mechanical Systems Engineering, Faculty of Engineering, Fukuyama University , 985-1 Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan

Abstract

Abstract A new theoretical model of vapor quality in subcooled flow boiling is proposed based on energy balance and well-known heat transfer correlations. This model takes into account the enhancement of forced convection heat transfer due to the presence of vapor. It is shown that the vapor quality predicted by our model is much less than that by a previous model for low pressure. This result demonstrates that the convective heat transfer coefficient (HTC) cannot be constant, and the effect of gas phase on forced convection heat transfer cannot be neglected even for subcooled flow boiling, particularly at low pressures. However, the difference between the present and previous models decreases as the pressure increases because (i) the increase of the convective heat transfer coefficient is weakened, and (ii) boiling heat transfer becomes dominant. The difference becomes large if the mass flux is increased or the wall heat flux is decreased, owing to the difference in the form of the convective heat flux. Furthermore, the present model has the capability of locating the point at which bulk boiling commences. In general, this saturation point moves downstream as the wall heat flux and pressure increase, and upstream as the mass flux and tube diameter increase. In addition, the present model can be simplified to a one-variable model, which is a good approximation of the original one especially for low pressures and wall heat flux and high mass flux.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3